
SOME DICHOTOMY THEOREMS

CHRISTIAN ROSENDAL

1. THE G0 DICHOTOMY

A digraph (or directed graph) on a set X is a subset G ⊆ X2 \∆. Given a digraph
G on a set X and a subset A ⊆ X , we say that A is G-discrete if for all x, y ∈ A we
have (x, y) ∉G.

Now let sn ∈ 2n be chosen for every n ∈ N such that ∀s ∈ 2<N ∃n s v sn. Then we
can define a digraph G0 on 2N by

G0 = {(sn0x, sn1x) ∈ 2N×2N
∣∣ n ∈N& x ∈ 2N}.

Exercise 1. Show that if x, y ∈ 2N differ in only finitely many coordinates, then there
is a path x0 = x, x1, . . . , xn = y such that for all i, either (xi, xi+1) ∈G0 or (xi+1, xi) ∈G0.
Hint: The proof is by induction on the last coordinate in which they differ.

Lemma 2. If f : 2N → X is a continuous function into a Polish space X such that
xG0 y⇒ f (x)= f (y), then f is constant.

Proof. If not, by continuity, we can find basic open sets Ns, Nt ⊆ 2N such that f [Ns]∩
f [Nt] = ;. Extending s or t, we can suppose that |s| = |t|, and thus for any x ∈
2N, f (sx) 6= f (tx). On the other hand, such sx and tx differ only in finitely many
coordinates, so by Exercise 1 they are connected by a path in G0, which contradicts
the properties of f . �

Lemma 3. If B ⊆ 2N has the Baire property and is non-meagre, then B is not G0-
discrete.

Proof. By assumption on B, we can find some s ∈ 2<N such that B is comeagre in Ns.
Also, by choice of (sn), we can find some n such that s v sn, whereby B is comeagre in
Nsn . By the characterisation of comeagre subsets of 2N, we see that for some x ∈ 2N,
we have sn0x, sn1x ∈ B, showing that B is not G0-discrete. �

Suppose G and H are digraphs on sets X and Y respectively. A homomorphism
from G to H is a function h : X →Y such that for all x, y ∈ X ,

(x, y) ∈G ⇒ (h(x),h(y)) ∈ H.

Also, if Z is any set, a Z-colouring of a digraph G on X is a homomorphism from G
to the digraph 6= on Z, i.e., a function h : X → Z such that for all x, y ∈ X ,

(x, y) ∈G ⇒ h(x) 6= h(y).

Proposition 4. There is no Baire measurable N-colouring of G0.

Proof. Note that if h : 2N → N is a Baire measurable function, then for some n ∈ N,
B = h−1(n) is non-meagre with the Baire property and hence not G0-discrete. So h
cannot be a homomorphism from G0 to 6= on N. �
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Theorem 5 (Kechris–Solecki–Todorcevic). Suppose G is an analytic digraph on a
Polish space X . Then exactly one of the following holds:

- there is a continuous homomorphism from G0 to G,
- there is a Borel N-colouring of G.

Proof. (B. Miller) If X is countable, the result is trivial. So if not, let f : NN→ P be a
continuous bijection onto the perfect kernel P of X . By replacing G with ( f × f )−1[G],
there is no loss of generality in assuming that X =NN.

So suppose F ⊆NN×NN×NN is a closed set such that

(x, y) ∈G ⇔∃z (x, y, z) ∈ F.

In order to produce a continuous homomorphism h from G0 to G it suffices to find
monotone Lipschitz functions u,vm : 2<N →N<N, m ∈N, such that for all m < k and
t ∈ 2k−m−1, (

Nu(sm0t) ×Nu(sm1t) ×Nvm(t)
)∩F 6= ;.

In this case, we can define h, ṽm : 2N→NN by h(w)=⋃
n u(w|n) and ṽm(w)=⋃

n vm(w|n).
For then if m ∈ N and w ∈ 2N are given, there are xk, yk, zk ∈ NN such that xk →
h(sm0w), yk → h(sm1w) and zk → ṽm(w) such that for all k, (xk, yk, zk). So, as F is
closed, also

(h(sm0w),h(sm1w), ṽm(w)) ∈ F,

whence (h(sm0w),h(sm1w)) ∈G, showing that h is a homomorphism from G0 to G.
An n-approximation is a pair (u,v) of functions u : 2n →Nn and v : 2<n →Nn. Also,

if (u,v) is an n-approximation and (u′,v′) is an n+ 1-approximation, we say that
(u′,v′) extends (u,v) if u(s)v u′(si) and v(t)v v′(ti) for all s ∈ 2n, t ∈ 2<n and i = 0,1.

Suppose A ⊆ X and (u,v) is an n-approximation. We define the set of A-realisations,
R(A,u,v), to be the set of pairs of tuples (xs)s∈2n ∈ ∏

s∈2n
(
A ∩ Nu(s)

)
and (zt)t∈2<n ∈∏

t∈2<n Nv(t) such that

(xsm0t, xsm1t, zt) ∈ F

for all s ∈ 2n, m ∈N and t ∈ 2n−m−1. So if (u0,v0) is the unique 0-approximation (i.e.,
u(;) =; and v is the function with empty domain), we have R(A,u0,v0) = {x;

∣∣ x; ∈
A}= A. If (u,v) has no A-realised extension, we say that (u,v) is A-terminal.

Lemma 6. Suppose (u,v) is an A-terminal n-approximation, then

D(A,u,v)= {xsn

∣∣ ((xs)s∈2n , (zt)t∈2<n ) ∈R(A,u,v)}

is G-discrete.

Proof. Suppose toward a contradiction that

((x0
s )s∈2n , (z0

t )t∈2<n ), ((x1
s )s∈2n , (z1

t )t∈2<n ) ∈R(A,u,v)

satisfy (x0
sn , x1

sn ) ∈G. Then for some z; ∈NN, we have

(x0
sn , x1

sn , z;) ∈ F,

and hence, setting xsi = xi
s and zti = zi

t for all si ∈ 2n+1 and ti ∈ 2<n+1 \{;}, we get an
A-realisation ((xs)s∈2n+1 , (zt)t∈2<n+1 ) of an extension of (u,v), contradicting that (u,v)
is A-terminal. �
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Now define Φ⊆ P(X ) by

Φ(A)⇔ A is G-discrete.

Since G is analytic, Φ is Π1
1 on Σ1

1, and so, by the First Reflection Theorem, any G-
discrete analytic set A is contained in a G-discrete Borel set A′. Using this, we can
define a function D assigning to each Borel set A ⊆ X a Borel subset given by

D(A)= A \
⋃

{D(A,u,v)′
∣∣ (u,v) is A-terminal }.

Note that, as there are only countably many approximations (u,v), the set A \ D(A)
is a countable union of G-discrete Borel sets.

Lemma 7. Suppose (u,v) is an n-approximation all of whose extensions are A-terminal.
Then (u,v) is D(A)-terminal.

Proof. Note that if (u,v) is not D(A)-terminal, there is some extension (u′,v′) of (u,v)
and some realisation ((xs)s∈2n+1 , (zt)t∈2<n+1 ) ∈ R(D(A),u′,v′) ⊆ R(A,u′,v′). But since
(u′,v′) is A-terminal, we have D(A,u′,v′)∩D(A) = ;, contradicting that φ(xsn+1 ) ∈
D(A,u′,v′)∩D(A). �

Now define, by transfinite induction, D0(X )= X , Dξ+1(X )= D(Dξ(X )) and Dλ(X )=⋂
ξ<λDξ(X ), whenever λ is a limit ordinal. Then (Dξ(X ))ξ<ω1 is a well-ordered, de-

creasing sequence of Borel subsets of X , so the sets Tξ of approximations (u,v) that
are Dξ(X )-terminal is an increasing sequence of subsets of the countable set of all
approximations. It follows that for some ξ<ω1, we have Tξ = Tξ+1.

Now if (u,v) ∉ Tξ+1, then (u,v) is not D(Dξ(X ))-terminal and hence admits an
extension (u′,v′) that is not Dξ(X )-terminal either, whereby (u′,v′) ∉ Tξ = Tξ+1. So if
(u0,v0) denotes the unique 0-approximation and (u0,v0) ∉ Tξ+1, we can inductively
construct (un,vn) ∉ Tξ+1 extending each other. Setting

u =⋃
n

un

and for t ∈ 2n

vm(t)= vn+m+1(t),

we have the required monotone Lipschitz functions u,vm : 2<N → N<N to produce a
continuous homomorphism from G0 to G.

Conversely, if (u0,v0) ∈ Tξ+1, then (u0,v0) is Dξ+1(X )-terminal and hence Dξ+2(X )⊆
Dξ+1(X ) \D(Dξ+1(X ),u0,v0). But, since (u0,v0) is the unique 0-approximation, we
have

D(Dξ+1(X ),u0,v0)=R(Dξ+1(X ),u0,v0)= Dξ+1(X ),

whereby Dξ+2(X )=;. It follows that

X = ⋃
ζ<ξ+2

Dζ(X )\ Dζ+1(X )

is a countable union of G-discrete Borel sets. We can then define a Borel N-colouring
of G by letting c(x) be a code for the discrete Borel subset of X to which x belongs. �

Exercise 8. By inspection of the proof of Theorem 5, show that if G is a κ-Souslin
digraph on NN, then one of the following holds

- there is a continuous homomorphism from G0 to G,
- there is a κ-colouring of G.
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2. THE MYCIELSKI, SILVER AND BURGESS DICHOTOMIES

Theorem 9 (Mycielski’s Independence Theorem). Suppose X is a perfect Polish
space and R ⊆ X2 is a comeagre set. Then there is a continuous injection φ : 2N → X
such that for all distinct x, y ∈ 2N we have (φ(x),φ(y)) ∈ R.

Proof. Let d ≤ 1 be a compatible complete metric on X and choose a decreasing se-
quence of dense open subsets Un ⊆ X2 such that

⋂
n∈NUn ⊆ R. We construct a Cantor

scheme (Cs)s∈2<N of non-empty open subsets of X by induction on the length of s such
that for all distinct s, t ∈ 2n and i = 0,1, we have

Csi ⊆ Cs, diam(Cs)≤ 1
|s|+1

, and Cs ×Ct ⊆Un−1.

To see how this is done, suppose that Cs has been defined for all s ∈ 2n. Since X is
perfect, we can find disjoint, non-empty open subsets Ds0 and Ds1 of Cs for every
s ∈ 2n. Now, as Un is dense, Un ∩ (Dt ×Dt′ ) 6= ; for all distinct t, t′ ∈ 2n+1 and so
we can inductively shrink the Dt to open subsets Ct such that whenever t, t′ ∈ 2n+1

are distinct, we have Ct ×Ct′ ⊆ Un. By further shrinking the Csi if necessary, we
can ensure that Csi ⊆ Cs and diam(Cs) ≤ 1

|s|+1 . Now letting φ : 2N → X be defined by
{φ(x)}=⋂

n∈NCx|n , we see that φ is continuous. Also, if x, y ∈ 2N are distinct, then for
all but finitely many n we have (φ(x),φ(y)) ∈ Cx|n ×Cy|n ⊆Un−1, so, since the Un are
decreasing, we have (x, y) ∈⋂

n∈NUn ⊆ R. �

Theorem 10 (J. Silver). Suppose E is a conalytic equivalence relation on a Polish
space X . Then exactly one of the following holds

- E has at most countably many classes,
- there is a continuous injection φ : 2N → X such that for distinct x, y ∈ 2N,
¬φ(x)Eφ(y).

Proof. We define an analytic digraph G on X by setting G = X2 \ E. Notice first that
if c : X →N is a Borel N-colouring of G, then for all x, y ∈ X ,

¬xE y⇒ (x, y) ∈G ⇒ c(x) 6= c(y).

So for any n ∈ N, c−1(n) is contained in a single equivalence class of E. Moreover,
as X = ⋃

n∈N c−1(n), this shows that X is covered by countably many E-equivalence
classes.

So suppose instead that there is no Borel N-colouring of G. Then by Theorem 5
there is a continuous homomorphism h : 2N → X from G0 to G. Now let F = {(x, y) ∈
2N × 2N

∣∣ h(x)Eh(y)}. Then F is meagre. For otherwise, by the Kuratowski–Ulam
Theorem, there is some x ∈ 2N such that Fx is non-meagre and hence, by Lemma
3, there are y, z ∈ Fx such that (y, z) ∈ G0. As h is a homomorphism it follows that
(h(y),h(z)) ∈G = X2 \E, which contradicts that h(y)Eh(x)Eh(z). Therefore, applying
Mycielski’s Theorem to the meagre set F, we get a continuous function f : 2N → 2N

such that for distinct x, y ∈ 2N, ( f (x), f (y)) ∉ F, i.e., ¬h◦ f (x)Eh◦ f (y). Letting φ= h◦ f ,
we have the result. �

By the same proof, using istead the G0-dichotomy for ω1-Souslin sets, we deduce
the following result.

Theorem 11 (J. Burgess, L. A. Harrington–S. Shelah). Let E be a Σ1
2 equivalence

relation on a Polish space X . Then one of the following holds
- E has at most ℵ1 classes,
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- there is a continuous injection φ : 2N → X such that for distinct x, y ∈ 2N,
¬φ(x)Eφ(y).

Now as the isomorphism relation between the countable models of an Lω1ω-sentence
is an analytic equivalence relation, we have the following corollary, initially proved
by analysing the space of complete types.

Corollary 12 (M. Morley). Suppose L is a countable language and σ is a Lω1ω sen-
tence. Then there are either a continuum of non-isomorphic countable models of σ or
at most ℵ1 non-isomorphic models of σ.

Theorem 13 (Lusin–Novikov). Suppose X and Y are Polish spaces and A ⊆ X ×Y a
Borel subset. Assume that for every x ∈ X , the vertical section Ax is countable. Then
there are Borel sets Fn such that |(Fn)x| É 1 for every x ∈ X and A =⋃

n∈NFn.

Proof. Define a Borel digraph G on X ×Y by

(x, y)G(x′, y′)⇔ x = x′ & y 6= y′ & (x, y) ∈ A & (x′, y′) ∈ A.

Assume first that f : X ×Y → N is a Borel N-coloring of G. Then for every n ∈ N,
Fn = A ∩ f −1(n) is a G-discrete Borel subset of X ×Y and A = ⋃

n∈NFn. Moreover,
since Fn is G-discrete, we see that |(Fn)x| É 1 for all x ∈ X .

Now, by Theorem 5, if there is no such colouring, then there is a continuous homo-
morphism h : 2N → X ×Y from G0 to G. Composing with the coordinate projections,
we obtain continuous functions hX : 2N→ X and hY : 2N→Y such that

aG0b ⇒ hX (a)= hX (b).

By Lemma 2, hX is constant with some value x0 ∈ X and so

aG0b ⇒ hY (a) 6= hY (b) & hY (a) ∈ Ax0 & hY (b) ∈ Ax0 .

Since Ax0 is countable, there is an injection π : Ax0 → N, and thus π ◦ hY : 2N → N

is a continuous N-colouring of G0, contradicting Proposition 4. So the first option
holds. �


