SOME DICHOTOMY THEOREMS

CHRISTIAN ROSENDAL

1. THE Go DICHOTOMY

A digraph (or directed graph) on a set X is a subset G < X2\ A. Given a digraph
G on a set X and a subset A € X, we say that A is G-discrete if for all x,y € A we
have (x,y) ¢ G.

Now let s, € 2" be chosen for every n € N such that Vs € 2N 3n s s,,. Then we
can define a digraph G on 2N by

Go={(s,0x,8,1x) €2V x 2V | n e N & x € 2.

Exercise 1. Show that if x,y € 2V differ in only finitely many coordinates, then there
is a path xg = x,x1,...,%, = ¥ such that for all i, either (x;,x;+1) € Gg or (x;+1,%;) € Go.
Hint: The proof is by induction on the last coordinate in which they differ.

Lemma 2. If : 2N — X is a continuous function into a Polish space X such that
xGoy = f(x) = f(y), then f is constant.

Proof If not, by continuity, we can find basic open sets Ng, N; € 2V such that f[N,]1n
fIN:] = . Extending s or ¢, we can suppose that |s| = |[¢|, and thus for any x €
2N, f(sx) # f(#x). On the other hand, such sx and ¢x differ only in finitely many
coordinates, so by Exercise 1 they are connected by a path in G¢, which contradicts
the properties of f. O

Lemma 3. If B < 2N has the Baire property and is non-meagre, then B is not Gy-
discrete.

Proof By assumption on B, we can find some s € 2<N such that B is comeagre in N.
Also, by choice of (s;), we can find some n such that s C s,,, whereby B is comeagre in
N, . By the characterisation of comeagre subsets of 2N, we see that for some x € 2N,
we have s,0x,s,1x € B, showing that B is not G(-discrete. ([l

Suppose G and H are digraphs on sets X and Y respectively. A homomorphism
from G to H is a function A: X — Y such that for all x,y € X,

(x,9)€G = (h(x),h(y) € H.

Also, if Z is any set, a Z-colouring of a digraph G on X is a homomorphism from G
to the digraph # on Z, i.e., a function 2: X — Z such that for all x,y € X,

(x,y) € G = h(x) # h(y).
Proposition 4. There is no Baire measurable N-colouring of Go.

Proof. Note that if &: 2N — N is a Baire measurable function, then for some n € N,
B = h~1(n) is non-meagre with the Baire property and hence not Go-discrete. So A
cannot be a homomorphism from Gg to # on N. O
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Theorem 5 (Kechris—Solecki—Todorcevic). Suppose G is an analytic digraph on a
Polish space X. Then exactly one of the following holds:

- there is a continuous homomorphism from Gy to G,
- there is a Borel N-colouring of G.

Proof (B. Miller) If X is countable, the result is trivial. So if not, let f: NN — P be a
continuous bijection onto the perfect kernel P of X. By replacing G with (f x ) 1[G,
there is no loss of generality in assuming that X =NV,

So suppose F <NV x NN x NV is a closed set such that

(x,y)€eG &3z (x,y,z)eF.

In order to produce a continuous homomorphism A from Gg to G it suffices to find
monotone Lipschitz functions u,v™: 2<N — NN, m € N, such that for all m < % and
t € 2k—m—1

(Nus,,00 % Nugs, 16y X Nymp)) N F # .
In this case, we can define 4,57 : 2 — NN by A(w) = U, w(wl,) and 5 w) = U, v wly,).
For then if m € N and w € 2V are given, there are xz,vs,2; € NN such that x; —

h(smO0w), yr — h(s;ym1w) and z, — 0™ (w) such that for all &, (xz,yr,2,). So, as F is
closed, also

(R(sm0w), h(s,1w), 0™ (W) EF,

whence (A(s;,0w), h(s,, 1w)) € G, showing that A is a homomorphism from G to G.
An n-approximation is a pair (u,v) of functions u: 2" — N"” and v: 2<" — N". Also,
if (u,v) is an n-approximation and (z',v’) is an n + l-approximation, we say that
W', v") extends (u,v)if u(s)Su'(si) and v(¢) S v'(ti) forallse 2™, t€2<" and i =0, 1.
Suppose A < X and (u,v) is an n-approximation. We define the set of A-realisations,
R(A,u,v), to be the set of pairs of tuples (xs)se2n € [Tsean (A N Ny(s)) and (z;)eo<n €
[Te2<n Ny(p such that
(%s5,,0t5%5,,1,2t) EF

for all s€2”, meN and ¢ € 2" ™1 So if (ug,v0) is the unique 0-approximation (i.e.,
u(®) = ¢ and v is the function with empty domain), we have R(A,u¢,v¢) = {xy | Xp €
A} =A. If (u,v) has no A-realised extension, we say that (u,v) is A-terminal.

Lemma 6. Suppose (u,v) is an A-terminal n-approximation, then
DA, u,v) = {xs, | (x5)se2n, (2)rea<n) € R(A, u,v)}
is G-discrete.
Proof. Suppose toward a contradiction that
(()sean, (2D)rea<n), (5)se2n, (21 )rea<n) € R(A, u,v)

satisfy (x(s)n,xsln) € G. Then for some z4 € NN, we have

(xgn,xsln,zQ;) eF,
and hence, setting x; = x and z; = zi for all si € 2"*1 and ¢ € 2<"*1\ {@}, we get an
A-realisation ((xs)scon+1,(2¢)ea<n+1) of an extension of (u,v), contradicting that (u,v)
is A-terminal. O
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Now define ® < P(X) by
®(A) © A is G-discrete.

Since G is analytic, @ is H% on Zi, and so, by the First Reflection Theorem, any G-
discrete analytic set A is contained in a G-discrete Borel set A’. Using this, we can
define a function D assigning to each Borel set A € X a Borel subset given by

D(A)=A\UJIDA,u,v) | (u,v) is A-terminal }.

Note that, as there are only countably many approximations (u,v), the set A\D(A)
is a countable union of G-discrete Borel sets.

Lemma 7. Suppose (u,v) is an n-approximation all of whose extensions are A-terminal.
Then (u,v) is D(A)-terminal.

Proof. Note that if (z,v) is not D(A)-terminal, there is some extension (u’,v’) of (u,v)
and some realisation ((xs)seon+1,(2¢)sca<n+1) € RID(A),u’,v") < R(A,u’,v'). But since
(u',v') is A-terminal, we have D(A,u’,v") N D(A) = @, contradicting that ¢(xs,,,) €
D(A,u’,0") N D(A). O

Now define, by transfinite induction, D%(X) = X, D**1(X) = D(D*(X)) and DM(X) =
Ne< 1D4(X), whenever A is a limit ordinal. Then (D*(X N¢<w, is a well-ordered, de-
creasing sequence of Borel subsets of X, so the sets T of approximations (z,v) that
are D*(X)-terminal is an increasing sequence of subsets of the countable set of all
approximations. It follows that for some ¢ < w1, we have T = T¢.1.

Now if (u,v) ¢ T¢41, then (u,v) is not D(D%(X))-terminal and hence admits an
extension (u',v’) that is not D*(X)-terminal either, whereby (u',v") ¢ T¢ = T¢11. So if
(uo,v0) denotes the unique 0-approximation and (zg,vo) ¢ T¢+1, we can inductively
construct (u,,v,) ¢ T¢41 extending each other. Setting

u=un
n

and for ¢ € 2"
v™(t) = Un+m+1(8),

we have the required monotone Lipschitz functions u,v
continuous homomorphism from Gy to G.

Conversely, if (ug,vg) € Ter1, then (ug,vg) is D$*1(X)-terminal and hence DS*2(X) <
DX\ DD (X)), ug,v0). But, since (wg,vo) is the unique 0-approximation, we
have

m . 2N . N<N to produce a

DD (X)), ug,v0) = RD (X)), ug,v0) = D¢ (X)),
whereby D**2(X) = . It follows that

X = |J DYX)\D(X)
(<é+2

is a countable union of G-discrete Borel sets. We can then define a Borel N-colouring
of G by letting c(x) be a code for the discrete Borel subset of X to which x belongs. [J

Exercise 8. By inspection of the proof of Theorem 5, show that if G is a x-Souslin
digraph on NV, then one of the following holds

- there is a continuous homomorphism from Gg to G,

- there is a x-colouring of G.
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2. THE MYCIELSKI, SILVER AND BURGESS DICHOTOMIES

Theorem 9 (Mycielski’s Independence Theorem). Suppose X is a perfect Polish
space and R < X2 is a comeagre set. Then there is a continuous injection b: N X
such that for all distinct x,y € 2N we have (p(x),P(y)) € R.

Proof. Let d <1 be a compatible complete metric on X and choose a decreasing se-
quence of dense open subsets U, € X2 such that N,en U, S R. We construct a Cantor
scheme (C;) c9<nv of non-empty open subsets of X by induction on the length of s such
that for all distinct s,#€ 2™ and i = 0,1, we have

C.icCs, diam(C,) < and CyxC;<U,_1.

Is|+1’
To see how this is done, suppose that C; has been defined for all s € 2". Since X is
perfect, we can find disjoint, non-empty open subsets Dyg and Dg; of C; for every
s € 2". Now, as U, is dense, U, N (D; x Dy) # ¢ for all distinct £,#' € 2"*! and so
we can inductively shrink the D; to open subsets C; such that whenever ¢, € gn+l
are distinct, we have C; x Cy < U,,. By further shrinking the Cj; if necessary, we
can ensure that Cs; < C; and diam(C;) < \SI% Now letting ¢: 2V — X be defined by
{p(x)} =MNpen Cx, » We see that ¢ is continuous. Also, if x,y € 2N are distinct, then for
all but finitely many n we have (¢(x),p(y)) € Cy), x Cy|, SUp_1, so, since the U,, are
decreasing, we have (x,y) € NpenUn S R. [l

Theorem 10 (J. Silver). Suppose E is a conalytic equivalence relation on a Polish
space X. Then exactly one of the following holds

- E has at most countably many classes,
- there is a continuous injection ¢: 2N — X such that for distinct x,y € 2V,

AP(X)EP(y).

Proof. We define an analytic digraph G on X by setting G = X2\ E. Notice first that
if ¢: X — N is a Borel N-colouring of G, then for all x,y € X,

xEy=(x,y) € G = c(x) #c(y).

So for any n €N, ¢~ 1(n) is contained in a single equivalence class of E. Moreover,
as X = Upen ¢~ (n), this shows that X is covered by countably many E-equivalence
classes.

So suppose instead that there is no Borel N-colouring of G. Then by Theorem 5
there is a continuous homomorphism % : 2V — X from Gy to G. Now let F = {(x,y) €
2N x 2N | h(x)Eh(y)}. Then F is meagre. For otherwise, by the Kuratowski-—Ulam
Theorem, there is some x € 2V such that F, is non-meagre and hence, by Lemma
3, there are y,z € F, such that (y,z) € Go. As h is a homomorphism it follows that
(h(y),h(2)) € G = X2\ E, which contradicts that A(y)Eh(x)Eh(z). Therefore, applying
Mycielski’s Theorem to the meagre set F, we get a continuous function f: 2N — 2N
such that for distinct x,y € 2V, (f(x), f(y) ¢ F, i.e., "hof(x)Ehof(y). Letting ¢ = hof,
we have the result. (I

By the same proof, using istead the Go-dichotomy for w;-Souslin sets, we deduce
the following result.

Theorem 11 (J. Burgess, L. A. Harrington—S. Shelah). Let E be a Zé equivalence
relation on a Polish space X. Then one of the following holds

- E has at most X1 classes,



SOME DICHOTOMY THEOREMS 5

- there is a continuous injection ¢: 2N — X such that for distinct x,y € 2V,

“P(x)EP(y).

Now as the isomorphism relation between the countable models of an L, ,,-sentence
is an analytic equivalence relation, we have the following corollary, initially proved
by analysing the space of complete types.

Corollary 12 (M. Morley). Suppose L is a countable language and o is a L, sen-
tence. Then there are either a continuum of non-isomorphic countable models of o or
at most X1 non-isomorphic models of o.

Theorem 13 (Lusin—Novikov). Suppose X and Y are Polish spacesand AcX xY a
Borel subset. Assume that for every x € X, the vertical section A, is countable. Then
there are Borel sets F,, such that |(Fy).| <1 for every x € X and A =Upen Fh.

Proof. Define a Borel digraph G on X xY by
@, NG,y ox=x"&y#y &x,y)c A& («',y)cA.

Assume first that f: X xY — N is a Borel N-coloring of G. Then for every n € N,
F, =Anfn)is a G-discrete Borel subset of X xY and A = U,enFn. Moreover,
since F, is G-discrete, we see that |(F,,),| <1 for all x € X.

Now, by Theorem 5, if there is no such colouring, then there is a continuous homo-
morphism A: 2N — X x Y from G to G. Composing with the coordinate projections,
we obtain continuous functions Ax: 2¥ — X and Ay : 2¥ — Y such that

aGob = hx(a)=hx(b).
By Lemma 2, hx is constant with some value x¢ € X and so
aGob=hy(@)Zhy(D)&hy(a)e Ay & hy(b)EA,,.

Since A,, is countable, there is an injection 7: A, — N, and thus mohy: 2¥ — N
is a continuous N-colouring of Gg, contradicting Proposition 4. So the first option
holds. O



